
Department of Computer Science

Visualization & Computer Graphics Research Group

Offline BRDF Computation for

Microscale Volumes

Bachelor Thesis

submitted by:

Karsten Jeschkies

Matriculation number: 342058

Supervisor: PD Dr. Timo Ropinski

Münster, August 13th 2010

Abstract

While the physics of light are well known, computer scientists still struggle to use this

knowledge for real-time rendering of photo realistic images. Especially the phenomena of

light in microscale magnitudes are hard to simulate or estimate in real-time.

This thesis will propose a way to pre-calculate the behaviour of light in microscale

magnitudes which can be described by Bidirectional Reflectance Distribution Functions

(BRDF). The described pre-calculation or offline computation will be specialized on vol-

umes.

A modified Path Tracer named Photon Tracer will be used to compute BRDF data offline.

This means the data is calculated and stored and can then be later used to render more

realistic images in real-time.

Contents

1 Introduction 2

2 Related Work 4

2.1 Bidirectional Reflectance Distribution Function (BRDF) 4

2.1.1 Introduction to BRDF Theory . 4

2.1.2 BRDF Models and Problems . 6

2.1.3 A Different Approach and a Solution 7

2.2 Path Tracing . 8

2.2.1 Introduction . 8

2.2.2 Calculating the Specular and the Diffuse Reflection Vector 9

2.2.3 Color Compositing . 11

2.2.4 Ray Tracing of Volumes . 11

2.3 Helper Algorithms . 13

2.3.1 Monte Carlo Sampling for Spheres 14

2.3.2 Calculating Entry and Exit Points from Unit Sphere Samples . . . 15

3 A Path Tracer for BRDF Computation 18

3.1 Introduction to Voreen . 18

3.2 The Raytracer Module . 19

3.2.1 Implementation of the Path Tracer 19

3.2.2 Functions and Properties . 24

CONTENTS 1

3.2.3 From Path Tracing to Photon Tracing 24

3.2.4 BRDF Data Representation . 27

4 Evaluation and Conclusion 29

4.1 Implementation Problems and Missing Features 29

4.2 Conclusion . 30

5 Future Work 31

Bibliography 33

A Path Tracer Source Code 35

B Calculation of Sampling Points on Sphere 41

C Photon Tracer Source Code 43

Erklärung über Eigenständigkeit 51

Chapter 1

Introduction

Ever since the arrival of the computer in the middle of the last century people tried to

create a digital copy of the real world on the computer. They started to render the world

on the screen. The ultimate goal was and still is to generate a photo-realistic image.

When we compare computer generated images from the 1970’s and today’s images of

video games we see that scientists not only have developed ways to create more realistic

images, the images can be also rendered in real time to some extent. However, even

some of the biggest computer clusters of today’s special-effects companies hardly succeed

in creating convincingly realistic images. This might come as a surprise because the

underlining physics of light are actually well-understood today.

In 1986, Kajiya introduced the rendering equation [Kaj86]. This equation is supposed to

describe the behaviour of light when it is emitted and reflected. That would mean one

just has to let computer renderers solve the equation to reach the ultimate goal of photo-

realistic graphics. Unfortunately, there are several problems. Frist, the equation is not

discrete. Thus, computers have to estimate a solution. This leads to a second problem.

Estimations with small error cost a lot of performance and are hardly practical for real-

time renderings or even non-real-time renderings. For example, even though we can write

a program which simulates the reflection of light on a microscale level the program would

not generate an image of a landscape in an acceptable time span.

This thesis will propose a way how to render scenes with many objects on a relatively large

scale in real-time while still considering the microscale structures of the rendered objects.

The solution will be based on the theory of off-line computing Bidirectional Reflectance

Distribution Functions (BRDF) proposed by Westin et al. [WAT92]. The theory will be

extended to renderings of volumes. To compute BRDFs a Path Tracer for volumes will

be developed and then modified to trace photons through a volume specimen.

3

The first part of this paper will describe the problem and proposed solution in detail. A

short overview of the theory of BRDFs and the Path Tracing algorithm will be given. At

the end of the first part two helper algorithms will be explained which will be used in the

implementation of a modified Path Tracer.

The second part of the paper will describe the implementation of the Path Tracer for

volumes and its modification to generate BRDF data.

The last part of the paper will discuss several problems of the implementation and draw

a conclusion.

Chapter 2

Related Work

2.1 Bidirectional Reflectance Distribution Function

(BRDF)

2.1.1 Introduction to BRDF Theory

When a light beam hits a surface of a material several things can happen. The light can

be absorbed by the material. It can go right through the material as it happens when

light travels through the air. When the beam enters or leaves a material there can be

a refraction. That means the light beam bends right at the surface. This effect can be

easily observed when we dip a pencil half way into a fish tank: the pencil seems to be

bend at the water surface as seen in the figure 2.1. Light which is reflected by the pencil

in the water and leaves the water is bend at the surface of the water.

Another well-known effect is the reflection of light at a surface. The angle at which

light is reflected can be easily calculated. The angle of incidence equals the angle of

reflectance. However, this is only true for perfect reflection on perfectly smooth surfaces.

Most materials in the real physical world do not reflect light perfectly, though. They are

not perfectly smooth. Brushed metal for instance seems to be very smooth when we look

at it with our eyes. Observed with a microscope we discover little bumps at the surface.

Light which hits the surface of brushed metal is reflected at these little bumps across the

metal and leaves the metal surface at different places as seen in figure 2.2. That means to

render realistic light effects the interaction of light with the microgeometry of an object

has to be simulated.

2.1 Bidirectional Reflectance Distribution Function (BRDF) 5

Figure 2.1: The pencil seems to bend at the surface of the water. (The image is taken
with permissions from [Wik10])

Surface

(a)

Surface

(b)

Figure 2.2: Light reflection on a rough surface: (a) Light rays are reflected across the
surface and emitted at different places. (b) Light rays are reflected at a rough surface.
The amount of light reaching the eye depends on the perspective.

All of the described phenomena can happen at once. The light is scattered on and within

the surfaces, it is emitted partially at different places and so on. The result is that the

amount of light which reaches our eyes when we look at a point on a surfaces is not equal

for all angels we look at the point. In other words, the portion of photons reaching our

eyes depends on the direction they hit the point we are looking at and the direction they

are reflected into our eyes. The direction we look at the point is our view direction as

seen in figure 2.2 b [AMHH08]. Materials which appearance is view dependent are called

anisotropic.

In computer graphics the portion is given by the bidirectional distribution function,

BRDF. The BRDF is the ratio between differential outgoing radiance and differential

irradiance. The basic form is given in equation 2.1.

f(l, v) =
dLo(v)

dEi(l)
(2.1)

The view vector is l. The direction the photons hit the point we look at is v. dLo denotes

the outgoing light or radiance. It is the radiance which reaches our eyes. dEi is the

irradiance, the amount of photons which reach the point.

2.1 Bidirectional Reflectance Distribution Function (BRDF) 6

θi
θoV

l

φ
φo

i

Figure 2.3: The azimuth angles are ϕi and ϕo and zenith angles are θi and θo.

The function can also be described as a four dimensional function (compare [Com05])

with the azimuth (ϕi and ϕo) and zenith angles as input as seen in equation 2.2. See

figure 2.3 for an illustration of the angles.

f(ϕi, θi, ϕo, θo) =
dLo(ϕo, θo)

dEi(ϕi, θi)
(2.2)

If we can determine the BRDF of a surface we can determine how many photons are

reflected at a point and reach the view point. This can help us simulate many effects of

the real world such as the appearance of satin or brushed metal.

Several models have been proposed to determine the BRDF of a material. However,

most models come with problems. The next section will deal with such models and their

problems.

2.1.2 BRDF Models and Problems

I have given a small introduction about the idea behind BRDFs. The following is a list of

BRDF models which have been developed in the past. I will also discuss the difficulties

they front.

A very basic version of a BRDF would be just a constant value for all angles. This

approach, however, does not lead to realistic results. To achieve higher realism the BRDF

needs more complex models. Basically, there are three approaches to define models for

a BRDF. A model can be created using empirical methods, it can be based on physical

theories and it can be represented by mathematical fitting functions.

One of the first BRDF models was introduced by Bui Tuong Phong [Pho75]. Phong’s

model is still widely used today because it is not too complex and delivers acceptable

2.1 Bidirectional Reflectance Distribution Function (BRDF) 7

results most of the time. However, it does not always lead to pleasing and realistic images.

Several other models were introduced in the wake of Phong. All of them have the goal to

deliver better and more realistic results for most materials. Westin et al. [WLT04] and

Ngan et al. [NDM05] give good reviews on these. Most of these models are fast enough

to be used for real-time renderings. They have also few coefficients and thus can be fairly

easily adjusted by an artist to match certain materials. Comparisons to measured BRDF

data from real world materials show, however, that these models cannot generate adequate

results for every material (compare [NDM05]). Especially the appearances of anisotropic

materials cannot be faithfully rendered with most models (compare [NDM05]).

In contrast, mathematical fitting representations of BRDFs are capable of representing

every BRDF exactly. That means that they could be used to render even anisotropic

materials. However, these models tend to have many coefficients (into the thousands).

An artist would have difficulties to find the right settings for all coefficients to create a

special material. Thus, mathematical models are not practical unless there is a way to

ease the definition of materials.

Summing up, most BRDF models which can be adjusted easily and are fast enough

for real-time rendering are not capable of describing all materials such as anisotropic

surfaces. Mathematical fitting representations of BRDFs on the other hand are capable

of such things. However, they are too complex to be matched to certain materials. Thus,

the lack of an all purpose BRDF model proposes a problem. There is a need for a model

which can be easily adapted to a material and is capable of describing every material

including anisotropic materials.

2.1.3 A Different Approach and a Solution

When Ngan et al. [NDM05] analysed several BRDF models they compared the modelled

data to BRDF data they measured from real world objects. They also used real world data

for renderings. Lindemann and Ropinski [LR10] applied BRDF data for illuminations in

volume renderings. Both showed that aggregated BRDF data can be used for real-time

renderings.

A solution for the stated problem in section 2.1.2 could be to compute BRDF data offline

instead of applying a BRDF model while rendering or a combination of both. The only

drawback is that the data has to be accumulated somehow. Ngan et al. [NDM05] built

a device to measure how light is reflected from certain materials in the real world. This

proved to be a time-consuming task. For every angle of incoming light the amount of

reflected light has to be measured from every perspective.

2.2 Path Tracing 8

Another way of aggregating BRDF data is presented by Westin et al. [WAT92]. They

defined different levels of detail. These levels range from macro levels to micro levels.

While surface structures on a macro level can be modelled with polygons and effects such

as bump mapping, structure details on micro levels need to be described by BRDFs. This

could be done by a BRDF model. However, Westin et al. used a different method. They

modelled the micro level with polygons. Then, they ray-traced the model surface. They

simulated how light was scattered, reflected, refracted, transmitted and absorbed. Rays

leaving the surface were measured. That means they measured how the photons hitting

a microscale surface were distributed over the surface. In that way they gathered BRDF

data on a hemisphere. The BRDF data was then used during real-time rendering on

the macro level to predict the distribution of the photons. This approach is reciprocal.

Computed BRDF data of one level can be used to computed BRDF data on the next

higher level.

The described idea can be also used to gather BRDF data for volume rendering. Instead of

simulating the light behaviour on a surface with a hemisphere the light could be measured

when it interacts with voxels in a volume specimen with the light coming from a sphere

around the specimen.

To simulate the light a modified Path Tracer could be used.

2.2 Path Tracing

In the last section I suggested that a modified Path Tracer could be used to compute

the interaction of light with a microscale surface or volume. In this section I will give an

introduction to the Path Tracing algorithm and explain how Path Tracing can be used to

render volumes.

2.2.1 Introduction

Path Tracing was introduced by Kajiya [Kaj86]. The idea is to estimate the rendering

integration which was introduced in the same paper with the help of Monte Carlo

methods which will be explained in section 2.3.1. In older ray tracing algorithms rays

were sent from each pixel of the resulting image into scene. When a ray hits an object

its specular reflection was calculated, it was transmitted or several rays were spawned

for diffuse reflection. The algorithms then start over and simulate the interactions of the

reflected and newly spawned rays with the objects in the scene. This is done until the

2.2 Path Tracing 9

rays hit a light emitter or a specified break condition is reached. The drawback of this

technique is that a few diffuse reflections create a massive amount of new rays. The data

handling becomes difficult. Kaijiya proposed a different approach. Instead of sending

one ray per pixel he suggested to send thousands of rays per pixel. When a ray would be

reflected diffusely just one new ray would be spawned. Its direction would be determined

by Monte Carlo sampling methods. These methods should ensure that the reflected rays

on a diffuse surface are distributed uniformly over the hemisphere of the surface.

2.2.2 Calculating the Specular and the Diffuse Reflection Vector

When a light beam or a ray hits a surface, that means it hits the interface of two different

materials, we can observe several phenomena as described above (see 2.1.1). One of these

is reflection. There can be specular and diffuse reflection. In this subsection I will describe

how the direction of a reflected ray can be determined.

Specular Reflection

Specular reflections are mirror-like. They occur at very smooth surfaces. The direction

of light is changed as can be seen in figure 2.4. In an ideal case the angle of incidence

equals the angle of reflectance. Equation 2.3 shows how the direction of the reflected

ray can be calculated. RV is a vector pointing in the new direction of the ray. N is the

surface Normal and L points towards the origin of the ray hitting the surface. The angle

of incidence is denoted by θ.

RV = 2 · cos(θ) ·N − L (2.3)

Diffuse Reflection

Diffuse reflections occur at very rough surfaces. These surfaces consist of many micro-

facets as seen in figure 2.2. An incoming ray is reflected in many directions as can be seen

in figure 2.5.

There are several ways to determine new directions for diffuse reflected rays in ray tracing

algorithms. Since the ray is reflected in many directions several new rays pointing to many

2.2 Path Tracing 10

RV

L

N

Figure 2.4: The angle of incidence is θi. L points towards the light source of the light ray.
Rv is the reflection direction.

points on a hemisphere over the hit surface can be spawned. This approach, however, can

lead to an overhead of new rays a described in section 2.2.1. In Path Tracing algorithms

only one new ray is spawned for diffuse reflections. The new direction is determined by a

Monte Carlo sampling method as described in 2.3.1. Instead of spawning a new ray the

direction of the old ray can be changed of course. However, this is just an implementation

detail.

Surface

θi

L

Figure 2.5: Diffuse reflection vectors: The light is reflected across the hemisphere. L is
pointing towards the light source.

2.2 Path Tracing 11

2.2.3 Color Compositing

When a light beam is reflected on a surface the color or intensity of the reflected light

beam needs to be determined. In Path Tracing this can be done with the traditional

Phong lighting methods.

For Specular Reflections

If the reflection of a ray is specular its intensity can be calculated with equation 2.4. I ins

is the incoming specular intensity. In the case of Path Tracing this would be the intensity

of the ray hitting the surface. ps and f are parameters controlling the specular reflection

of the surface such as the ”shininess” of the material. ϕ is the angle between the vector

V pointing towards the view point and the direction of reflection denoted by the vector

Rv. cos(ϕ) is calculated by the dot product of V and Rv.

Is = ps · I ins · cos(ϕ)f = ps · I ins · (V ·Rv)
f (2.4)

For Diffuse Reflections

The lighting of diffuse reflections is view independent. The premise of the equation is that

the light is equally distributed over the surface. This is only true for a perfect Lambertain

surface. However, it is generalized for every diffuse reflection.

The intensity of the reflected ray can be calculated as shown in equation 2.5. pd is a

parameter controlling the diffuse reflection of the surface. I ind is the incoming diffuse

intensity. In Path Tracing the intensity can be the same for specular and diffuse light.

θ is the angle on incidence. It is calculated by the dot product of the surface’s normal

vector N and the vector L which is point to the light’s origin.

Id = pd · I ind · cos(θ) = pd · I ind · (L ·N) (2.5)

2.2.4 Ray Tracing of Volumes

So far I have given an introduction to Path Tracing. The focus was on the interaction

between the rays and surfaces. In this section I will concentrate on ray tracing of volumes.

2.2 Path Tracing 12

Differences to Ray Tracing with Polygons

There are several differences of ray tracing volumes to ray tracing with polygons. A great

amount of calculation in ray tracing algorithms such as Path Tracing are denoted to the

determination of the intersection points between rays and objects. At each intersection

point the ray hits a surface. In a ray tracer for volumes no intersection points need to be

calculated. The rays are within the volume. They travel through the volume. So there is

no rendering time devoted for intersection calculations. However, it must be determined

when a ray hits a surface within a volume. To do so, the ray is sampled at a certain

step size. At each sampling point the intensity of the volume at the point is fetched. If

intensity is too low, the ray goes on in the same direction. If the intensity is above a

certain threshold it marks a surface and the ray hits a surface. Great care needs to be

taken in determining the step size.

When a ray hits a surface the angle of incidence needs to be calculated. This is the angle

to the surface normal. In volume rendering the normal of a surface can be determined

by the gradient as suggested by Levoy [Lev88]. There are several ways to determine the

gradient of a volume sample. The implementation in this work uses the central differences

method provided by Voreen.

The Volume-Rendering Integral in Volume Path Tracing

When a ray does not hit a surface at a sampling point and keeps its old direction the

intensity of the ray is still getting less depending on the intensity of the sampling points.

The light the ray transports is absorbed. On the other the hand there is light emission

which needs to be simulated. Both effects are described with the absorption / emission

integral or volume-rendering integral. The form of the integral can be seen in equation

2.6.

I(D) = I0 · e−
∫D
s0
κ(t) dt

+

∫ D

s0

q(s) · e−
∫D
s κ(t) dt (2.6)

Basically, the integral integrates other every emission and its absorption along a line from

s0 to D as seen in figure 2.6.

Since computers usually can only handle discrete numbers the integral needs to be esti-

mated. For the derivation of the estimation see Hadwiger et al. [HKRs∗06]. In the end

there are two compositing schemes. There is the front-to-back version as seen in equation

2.7 and the back-to-front version as seen in equation 2.8.

2.3 Helper Algorithms 13

Figure 2.6: Volume-Rendering Integral Illustration (graphic by Maike Dudek)

C ′i = C ′i+1 + T ′i+1Ci T ′i = T ′i+1(1− αi) (2.7)

Ci gives the color at position i and C ′i the resulting color of the integral at position i. T ′i

is the transparency at point i. α gives the opacity.

C ′i = C ′i−1(1− αi) + Ci T ′i = T ′i−1(1− αi) (2.8)

Equation 2.9 describes how the resulting opacity can be determined when using the back-

to-front composition.

α′i = αi + α′i−1(1− αi) (2.9)

The volume-rendering integral is used in volume Path Tracing to determine the intensity

of ray travelling through the same material.

2.3 Helper Algorithms

For the development of a Path Tracer several algorithms besides the Path Tracer itself are

needed. Points on a unit sphere need to be sampled. For the volume tracing entry points

need to be determined. This sections presents two Monte Carlo sampling algorithms for

sphere sampling and an algorithm for determining entry points of unit spheres in unit

boxes.

2.3 Helper Algorithms 14

2.3.1 Monte Carlo Sampling for Spheres

An important feature of a Path Tracer is Monte Carlo Sampling. In the case of a diffuse

reflection the new direction of a ray is determined by sampling a point on a hemisphere

over the hit surface. The sampling is distributed uniformly and randomly. This sampling

can be achieved by Monte Carlo integrations. Monte Carlo integrations are used to

estimate integrals by choosing random points and calculating their corresponding integral

value. The surface of a hemisphere or sphere can be described by an integral. With the

help of a Monte Carlo integration this integral can be estimated.

In this section two Monte Carlo Sampling algorithms are presented. The first is used to

sample points on a sphere around the specimen volume for the calculation of the BRDF

of the volume. The second variant is used to determine the new direction of a diffusely

reflected ray.

First Variant

Dimov et al. [DPS07] describe an algorithm which benefits from the symmetry of spheres.

First a sphere is divided into 48 spherical triangles as seen in figure 2.7. Then, points are

sampled on one triangle and 47 points for the other triangles are determined by using the

symmetry of the sphere.

They present a method to map a unit square to the spherical triangle. The mapping

is used to sample a point on one spherical triangle. This approach shifts the problem

of distributing samples on a sphere to distributing samples on a unit square. Finding

a uniform random distribution for unit square is an fairly easy task. Only two random

variables between 0 and 1 need to be determined.

The algorithm including the mapping has the following form. First to random variables

u and v are determined. Then the angles ϕ and θ are calculated as seen in equation 2.10.

ϕ =
uπ

4
θ =

v

cos(uπ
4

)
(2.10)

At last, the sampling points are calculated as described in equation 2.11. The sampling

point is then P = (Px, Py, Pz). The calculation of the other 47 symmetric sampling points

can be seen in appendix B.

2.3 Helper Algorithms 15

Px = cos(ϕ) · sin(θ) Py = sin(ϕ) · sin(θ) Pz = cos(θ) (2.11)

P0
P1

P2

P4
P3

P5

Figure 2.7: Partition of the eighth of a sphere into triangles.

Second Variant

In a Path Tracing algorithm a diffuse reflection is simulated by reflecting one ray in a

random direction as described in section 2.2.1. This direction is found by choosing a

uniformly distirbuted random point on a sphere or hemisphere. The direction vector

points from the center to the point. An algorithm to find such a point is given by Dutre

[Dut03, Equation 33]. The point is calculated as seen in equation 2.12. v and u are

again random variables uniformly distributed between 0 and 1. The sampling point is

P = (Px, Py, Pz).

Px = 2 · cos(2π · u) ·
√
v(1− v)

Py = 2 · sin(2π · u) ·
√
v(1− v)

Pz = 1− 2v

2.3.2 Calculating Entry and Exit Points from Unit Sphere Sam-

ples

During the off-line BRDF computation from every angle the amount of light has to be

measured. The light itself is shot from every angle. Since computers can only calculate

2.3 Helper Algorithms 16

with discrete numbers the view points and light ray origins have to be sampled on a

sphere. This is done with a sampling method as described in section 2.3.1. Once the

origins of the light rays are sampled on a sphere their entry points into the specimen

volume have to be determined. This is done with a simple algorithm described in this

section.

r

Center = (0.5, 0.5)

Samplingpoint

Entrypoint

Volume

Sphere with sampling points

Figure 2.8: Entry point calculation simplified by a projection onto a plane.

The unit sphere has its center at the center of the specimen in volume space. This is

(0.5, 0.5, 0.5) as seen in figure 2.8. The entry point of a light ray is the intersection point

between a line going through the sampling point and the center (the dashed line in the

figure) and the boundaries of the volume (the dotted lines). The idea is to calculate the

intersection point with each side of the volume and then decide which point is the entry

point. The intersection points are marked with green crosses. The entry point is marked

with a black cross.

Equation 2.12 shows how an intersection point between a line through point (0.5, 0.5, 0.5)

and a plane is calculated. ~p is a point on the plane. ~u and ~v are vectors on the plane. ~r

gives the direction of the line. For the side planes of a volume ~p is a corner of the volume.

Note that figure 2.8 shows the case for two dimensions. The planes are represented by

the dotted line.

2.3 Helper Algorithms 17

0.5

0.5

0.5

+ k · ~r = ~p+ s · ~u+ t · ~v = ~p+ s ·

uxuy
uz

+ t ·

vxvy
vz


⇒ k =

px + s · ux + t · vx − 0.5

rx

k =
py + s · uy + t · vy − 0.5

ry

k =
pz + s · uz + t · vz − 0.5

rz
(2.12)

To calculate the intersection point between the line and the plane we just have to find

k, which is the distance between the center and the entry point. ~u and ~v are always

parallel to one axis because the sides of the volume they span are parallel to the axes.

Thus, one dimension of ~u and ~v is zero. There are three cases to determine k as shown

in equation 2.13. For instance, in the first case ~ux and ~vx equal 0. For the cases rx = 0,

ry = 0 and rz = 0 there would be a division by zero. These cases have to be tested in an

implementation. If rx = 0 the vector is parallel to yz-plane. Thus, it does not cross the

sides of the volume which are parallel to the yz-plane and the case can be neglected. The

same applies to the cases ry = 0 and rz = 0.

k =
px − 0.5

rx
k =

py − 0.5

ry
k =

pz − 0.5

rz
(2.13)

To determine the entry point following steps need to be performed:

1. For each side plane of the volume determine k.

2. Discard every negative k.

3. Choose the smallest k and calculate the intersection point of ray l (the dashed line)

and the volume with P =

0.5

0.5

0.5

 + k · ~r. P is the intersection point and thus the

entry point of the ray into the volume.

Chapter 3

A Path Tracer for BRDF

Computation

This chapter is about the implementation of the Path Tracer for off-line BRDF com-

putation. The Path Tracer was implemented in the programming language C++. An

implementation for GPUs with e.g. OpenCL might have resulted in better performance.

However, debugging proved to be an important factor and was much easier with C++.

3.1 Introduction to Voreen

Figure 3.1: Voreen Interface: The nodes of the graph are processors.

3.2 The Raytracer Module 19

Voreen is an acronym for ”volume rendering engine”. It is a visualisation framework

developed by Ropinski et el. at the WWU in Münster [MSRMH09]. The main focus

lies on the visualisation of volumetric data. The framework is used in the application

VoreenVe. The structure of Voreen makes it ideal for the implementation of a Path Tracer

for volumetric data. Voreen consists of a core which handles basic input and output. The

core can be extended with different modules which mainly built up so called processors.

Processors can have inputs and outputs. These can be connected. A Processors can

e.g. convert an input to a different format. The extensibility is a great advantage of

Voreen. The Path Tracer can be easily implemented as a processor module and make use

of other processors. For instance, processors provide access to volume data or calculate

the gradients for a volume. Thus, there is no need to implement this functionality in the

Path Tracer module. The processors can be connected to a graph as shown in figure 3.1.

3.2 The Raytracer Module

This section focuses on the Raytracer module which implements the Path Tracer described

in chapter 2. At first a Path Tracer is implemented to render a volume. The rendered

image is used to debug the Path Tracer and to find the right settings for the Path Tracer.

Once the Path Tracer is finished it is modified to trace the energy of light trough a

specimen and compute BRDF data. I call this process ”Photon Tracing” which should

be not confused with Photon Mapping.

3.2.1 Implementation of the Path Tracer

In this section some parts of the implementation of the Path Tracer are described. The

implementation does not consider point light sources yet. An ambient light is assumed.

That is a constant light intensity around the volume.

The whole Path Tracer function can be seen in appendixA.

1 tg t : : vec4 PathTrace (Ray ray , const f loat s t epS i z e) ;

Listing 3.1: Declaration of the Path Tracer function

Listing 3.1 shows the declaration of the Path Tracing function. tgt is the namespace

of a graphics utility library called ”tiny graphics toolbox” which is develpoed at the

University of Münster. The parameter stepSize sets the sampling step size. Ray is a

3.2 The Raytracer Module 20

struct defining a ray of the Path Tracer. It can be seen in listing 3.2.

1 struct Ray {
2 tg t : : vec3 next sample ;

3 tg t : : vec3 d i r e c t i o n ;

4 tg t : : vec4 old medium ;

5 int r e cu r s i on dep th ;

6 } ;

Listing 3.2: The Ray struct

The implemented Path Tracer is a function which calls itself. It is recursive. To

avoid a stack overflow the steps of recursion are counted and saved in the property

recursion depth. Once the step count exceeds a certain limit the recursion is stopped.

old medium describes the material the ray was in. It is a RGBA color of the last sample.

direction is the normalized direction of the ray. It is important to note that during the

determination of the reflected vector the reversed direction has to be used. next sample

is the sample of the volume the ray hits.

At first, the color of the current sample and the gradient for the sample are retrieved.

Then three cases for the interaction between the ray and the volume are checked. The

ray can be in a transparent part of the volume. This is checked with the alpha value of

the current sample. Or the ray hits a solid surface and is reflected. For the reflection

there is a diffuse and a specular case.

1 // Use d i r e c t volume render ing i n t e g r a l i f ray i s in same medium , g rad i en t

i s not de f ined or a lpha i s too low

2 i f (tg t : : l ength (c o l o r − ray . old medium) < 0 .001 f | | tg t : : l ength (g rad i en t)

< 0 .001 f | | c o l o r . a < s o l i d a l p h a t h r e s h o l d . get ()) {
3 . . .

4 } else {
5 // Ray h i t s a d i f f e r e n t medium . Decide whether we have specu l a r or

d i f f u s e r e f l e c t i o n

6

7 // DIFFUSE case

8 i f (tg t : : l ength (g rad i ent) < g r ad i e n t s p e c u l a r t h r e s h o l d . get ()) {
9 . . .

10 }
11 // SPECULAR case

12 else {
13 . . .

3.2 The Raytracer Module 21

14 }
15 }

Listing 3.3: Case Testing for Ray Material Interactions

The Volume-Rendering Integral

If the ray is in a transparent medium the color is calculated using the volume-rendering

integral as seen in listing 3.4.

1 // The ray i s s t i l l in the SAME MEDIUM.

2

3 Ray i n t e g r a l r a y = ray ;

4 while (tg t : : l ength (c o l o r − i n t e g r a l r a y . old medium) < 0 .001 f | | c o l o r . a <

s o l i d a l p h a t h r e s h o l d . get ())

5 {
6 r e s u l t . r = r e s u l t . r + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . r ;

7 r e s u l t . g = r e s u l t . g + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . g ;

8 r e s u l t . b = r e s u l t . b + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . b ;

9 r e s u l t . a = r e s u l t . a + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ;

10

11 // Step forward in volume

12 i n t e g r a l r a y . next sample += s t epS i z e ∗ tg t : : normal ize (i n t e g r a l r a y .

d i r e c t i o n) ;

13

14 // Check i f next sample i s ou t s i d e o f volume

15 i f (i n t e g r a l r a y . next sample . x > 1 .0 f | | i n t e g r a l r a y . next sample . y > 1 .0

f | | i n t e g r a l r a y . next sample . z > 1 .0 f | | i n t e g r a l r a y . next sample . x <

0 .0 f | | i n t e g r a l r a y . next sample . y < 0 .0 f | | i n t e g r a l r a y . next sample

. z < 0 .0 f)

16 return r e s u l t ;

17

18 // Set o l d medium

19 i n t e g r a l r a y . old medium = co l o r ;

20

21 // Get new sample

22 c o l o r = this−>getVoxel (i n t e g r a l r a y . next sample) ;

23 }
24

25 // Raise recur s ion depth

26 i n t e g r a l r a y . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

27

3.2 The Raytracer Module 22

28 // Get next co l o r

29 tg t : : vec4 p r e c o l o r = pathTrace (i n t e g r a l r a y , s t epS i z e) ;

30

31 // Ca l cua l t e ray i n t e g r a l (f r on t to back)

32 r e s u l t . r = r e s u l t . r + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . r ;

33 r e s u l t . g = r e s u l t . g + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . g ;

34 r e s u l t . b = r e s u l t . b + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . b ;

35 r e s u l t . a = r e s u l t . a + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ;

Listing 3.4: Implementation of the Volume-Rendering Integral

The resulting color for the ray is given by the variable result. It is calculated using the

front-to-back compositing scheme as described in section 2.6. The recursion depth is

raised after the volume-rendering integral is determined. This is a small performance

enhancement, because there is no recursion which could lead to a stack overflow. As long

as light is in the same uniform material its direction is not changed. Thus the direction

of the ray should not be changed and the ray does not hit a surface. That means no

reflection has to be simulated by the PathTrace function. Using the volume-rendering

integral is an efficient way to simulated this behaviour of the light. Once the ray hits a

different material the PathTrace function calls itself to calculate the next step as seen in

line 29. Within the new function it is checked if the ray hit a new surface or just another

transparent material.

Diffuse Reflection Implementation

1 tg t : : vec3 normal = normal ized grad ;

2

3 // Create new ray

4 Ray new ray ;

5 new ray . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

6 new ray . old medium = co l o r ;

7 new ray . d i r e c t i o n = generateRandomDiffuseRay () ;

8 new ray . next sample = ray . next sample + s t e p s i z e ∗ new ray . d i r e c t i o n ;

9

10 f loat co s the ta = std : : max(0 . 0 f , t g t : : dot (normal , new ray . d i r e c t i o n)) ;

11 tg t : : vec4 r e f l e c t e d c o l o r = cos the ta ∗ PathTrace (new ray , s t e p s i z e , l og) ;

12

13 // Add r e f l e c t e d c o l o r s

14 r e s u l t = co l o r ∗ r e f l e c t e d c o l o r ;

Listing 3.5: Calculation of the Diffuse Reflection Vector

3.2 The Raytracer Module 23

Listing 3.5 is the code sample for diffuse reflection. The new direction of the ray is

determined by generateRandomDiffuseRay(). The function is an implementation of the

second sampling method described in section 2.3.1. The color compositing done in lines

10 till 14 is basically an implementation of the Phong Model explained in section 2.2.3.

The variable reflected color is the incoming light I ind multiplied with cos(θ). θ is the angle

of incidence.

Specular Reflection Implementation

1 Ray newRay ;

2 tg t : : vec3 r e v e r s e d r a y d i r e c t i o n = − ray . d i r e c t i o n ;

3 newRay . d i r e c t i o n = tgt : : normal ize (2 ∗ tg t : : dot (normalizedGrad ,

r e v e r s e d r a y d i r e c t i o n) ∗ normalizedGrad − r e v e r s e d r a y d i r e c t i o n) ;

4 newRay . next sample = ray . next sample + s t epS i z e ∗ newRay . d i r e c t i o n ;

5 newRay . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

6 newRay . old medium = ray . old medium ; // s ince the ray i s r e f l e c t e d in t o the

o ld medium , i t s t a y s the same

7

8 tg t : : vec4 r e f l e c t e d c o l o r = pathTrace (newRay , s t epS i ze , l og) ;

9

10 // Combine co l o r s us ing Phong

11 // Use Phong here cos (t h e t a) where t h e t a i s the ang l e between V (Viewvector

, incoming Ray) and R (r e f l e c t e d Ray) .

12 int e = specu la r exponent . get () ;

13 f loat f a c t o r = std : : max(0 .0 f , t g t : : dot (newRay . d i r e c t i on ,

r e v e r s e d r a y d i r e c t i o n)) ;

14 f a c t o r = pow(fac to r , e) ;

15 r e s u l t = co l o r ∗ f a c t o r ∗ r e f l e c t e d c o l o r ;

Listing 3.6: Specular Reflection Case Handling

The specular reflection is handled as seen in listing 3.6. The direction of the reflected ray

is determined in line 3. It is an implementation of the equation 2.3. Line 14 to 20 are the

implementation of the Phong Model for specular reflections as described in equation 2.4.

In line 8 the PathTracer calls itself to retrieve the incoming light at the the hit point of

the ray. The variable reflected color is incoming light describe by I ins in the Phong Model

for specular reflections. newRay.direction points towards the light source which is in this

case the reversed direction of the incoming light.

3.2 The Raytracer Module 24

3.2.2 Functions and Properties

The ray tracer module has two functions and several properties. It can render a volume

using the Path Tracer algorithm. This function should be used to debug the tracer. That

means the rendered image should be used to see if the values of properties of the module

are set to result in an acceptable image. If so the module can then be used to compute the

BRDF data for a given specimen. This is the second function of the Raytracer module.

A floating point property called ”Sampling Rate” is used to control the sampling rate of

the Path Tracer. Another floating point property controls what alpha or intensity values

are considered solid. That means at which value a voxel reflects and is not transparent.

This property is called ”Solid Alpha Threshold”. There is one integer property which

sets the specular exponent for the Phong model. It is called ”Specular Exponent”. One

boolean property controls if voxels should be fetched using linear filtering. Linear filtering

proved to be very performance consuming since the filtering is not done on a graphics

card. The last property is the ”Gradient Length for Specular Reflection” it sets at what

gradient length a voxel is specular reflecting and not diffusely.

All properties should be set when rendering with the Path Tracer because their influence

can be easily observed on an rendered image. Once the properties are final they can be

used for the BRDF computation.

3.2.3 From Path Tracing to Photon Tracing

The path tracer described so far just renders an image of the given volume. The

perspective is determined by the entry points of the rays and their direction. To render

an image similar to classic ray-casting algorithms used in direct volume rendering the

algorithm described by Krüger and Westerman [KW03] can be used to generate the

fitting ray entry points and directions. This approach was used to render a debug image.

The images in figure 3.2 show a comparison between the GLSL based raycasting renderer

of Voreen (a) and a rendering by the implemented Path Tracer (b).

To compute BRDF data for a volume specimen the implemented path trace needs to

be changed to calculate the amount of light a ray looses when it exits a specimen after

it travelled through it. I call this Photon Tracing. The photons are traced through

a specimen. This should not be confused with Photon Mapping which is a different

algorithm for different purposes developed by Jensen (for an introduction see [Jen01]).

Several things of the Path Tracer need to be changed. The structure of a ray needs to

3.2 The Raytracer Module 25

(a) (b)

Figure 3.2: Rendering results comparison: (a) GLSL Raycasting, (b) Path Tracing

carry a load which describes how much photons were lost. When the ray interacts with

a material the lost amount of photons needs to be determined.

1 f loat PhotonTrace (tg t : : vec3 l ightSampl ingPoint , tg t : : vec3 viewSamplingPoint

, const f loat s t e p s i z e) ;

Listing 3.7: Declaration of the Photon Tracer function

The PhotonTrace function is declared as seen in listing 3.7. The main difference to the

PathTrace function is that it returns just one float value. That value denotes how much

light sent from the lightSamplingPoint into to the volume reaches the viewSamplingPoint.

The whole function can be seen in appendix C.

1 struct EnergyRay {
2 tg t : : vec3 next sample ;

3 tg t : : vec3 d i r e c t i o n ;

4 tg t : : vec4 old medium ;

5 int r e cu r s i on dep th ;

6 f loat load ;

7 } ;

Listing 3.8: Implemented Structure for a Ray of the Photon Tracer

The implemented structure can be seen in listing 3.8. The only new parameter is load. It

describes what amount of photons the ray carries relatively to a full load. The maximum

is 1.0 and the minimum is 0.0. For instance, when 30% of the photons are absorbed at a

reflection the load will be 0.7.

3.2 The Raytracer Module 26

Volume Rendering Integral

The Photon Tracer has a modified volume rendering integral implemented. As long as

a ray is travelling through the same medium it loses photons. That means the load

decreases. This effect is simulated in the code seen in listing 3.9.

1 i n t e g r a l r a y . load = i n t e g r a l r a y . load ∗ (1 . 0 f − c o l o r . a) ;

Listing 3.9: Calculation of the Load Decrease of a Ray

The equation is similar to the calculation of the transparency in the front-to-back calcu-

lation of the volume rendering integral presented in section 2.6. Basically, the new load

is the portion of the old load that gets through the sample. The portion is determined by

the transparency of the current sample which is given by (1.0f - color.a);

Implementation for Diffuse and Specular Reflection

If a reflection is not ideal, not all photons are reflected in the same direction. That

means that some energy is lost. This can be described with the Phong Model. The same

calculations described in section 2.2.3 can be used to determine the lost for the photon

load of the ray.

The code for specular reflection can be seen in listing 3.10.

1 int e = specu la r exponent . get () ;

2 f loat f a c t o r = std : : max(0 .0 f , t g t : : dot (new ray . d i r e c t i on ,

r e v e r s e d r a y d i r e c t i o n)) ;

3 f a c t o r = pow(fac to r , e) ;

4

5 new ray . load ∗= fa c t o r ;

Listing 3.10: Load Loss at a Specular Reflection

The factor determines how much load is not lost. It is determined by the cosine of

the angle between the reflection direction and the light source. The light source is the

direction the ray is coming from in this case. The cosine is determined by the dot

product.

For diffuse reflection the new load is determined as seen in the code sample of listing

3.11.

3.2 The Raytracer Module 27

1 f loat co s the ta = std : : max(0 . 0 f , t g t : : dot (normal , new ray . d i r e c t i o n)) ;

2 new ray . load = cos the ta ∗ ray . load ;

Listing 3.11: Load Loss at a Diffuse Reflection

The variable costheta describes how much load is not lost. It is the cosine of the angle

between the surface normal and the direction of the reflection.

The rest of the implementation is similar. The recursive structure of the PathTrace

function was altered to an iterative form. This avoids the problem of a stack overflow and

allows a parallel calculation of the rays.

3.2.4 BRDF Data Representation

Once the BRDF is computed, the data has to be stored somehow to be used later during

rendering. This is a difficult task since there is a lot of data. For every view point on a

sphere the incoming light from all points on a sphere have to be determined. Depending

on the representation of the data and the ability to interpolate it might be sufficient or

not.

The focus of this thesis is not to find the perfect representation for BRDF data. However,

computing BRDFs is useless if they cannot be stored. Thus a representation is proposed

here to show that the storage is at least possible.

As mentioned before, for every view light is shot at the specimen from many samples on

a sphere. These samples can be mapped to a spherical environment map. A pixel on such

a map would then store how much photons reach the view when shot from a certain point

on the sphere. The texture coordinates for a sampling point are determined as seen in

equation 3.1.

(
s

t

)
=


Px

2 ·
√
P 2
x + P 2

y + (Pz + 1)2
+

1

2

Py

2 ·
√
P 2
x + P 2

y + (Pz + 1)2
+

1

2

 (3.1)

P = (Px, Py, Pz) is the light sampling point on a sphere. A texture created for the view

point (1, 0, 0) can be seen in figure 3.3. To determine the BRDF for a certain voxel during

rendering the right texture for the view needs to be loaded. The texture coordinates

are determined for the light hitting the voxel. The pixels corresponding to the texture

coordinates are fetched. Every channel of RGB contains the BRDF previously computed.

3.2 The Raytracer Module 28

So just one channel is used to determine the lighting of the voxel.

This BRDF representation has a big flaw. Besides the known distortions of spherical

environment maps there has to be one texture per sampled view. This leads to a great

amount of textures and thus data which needs to be handled. In addition there is no

hardware supported interpolation.

Figure 3.3: BRDF representation for one view. The artefacts show that light form those
angles is not reaching the view point.

Chapter 4

Evaluation and Conclusion

4.1 Implementation Problems and Missing Features

This section is about the problems which came up during the implementation. Missing

features are also listed.

The implementation of the Path Trace is recursive so far. A recursive version was faster to

implement and since the Path Tracer was just one step in between a quick implementation

was fine. However, a recursive implementation has several drawbacks. First, the Path

Tracer quickly came to a stack overflow. That means the computer ran out of memory.

Depending on the settings the Path Tracer could not take more than 500 steps. This

problem was avoided in the Photon Tracer by choosing an iterative implementation as

seen in appendix C. Another advantage of an iterative implementation is that the tracer

can be accelerated with parallel threads. Those threads could also run on a modern GPU.

Another challenge was to create a specimen suitable for rendering and computing of the

BRDFs. The specimen has to have a fairly high resolution and has to be very detailed to

ensure a high quality BRDF output. A 3D texture generated from a 2D texture seemed

to be an appropriate choice to be used as a volume specimen because it eased the creation

of the specimen while still ensuring high quality. In the end a 3D texture created by Kopf

et al. was modified and used. Kopf et al. [KFCO∗07] present a technique to synthesise

3D textures from 2D exemplar.

A missing feature so far is refraction. The equation to determine how a light beam bends

at the interface of two translucent materials is well known. However, a special index has

to be specified for every material. That means another parameter has to be set in every

voxel of the volume. This parameter could be saved in an additional channel.

4.2 Conclusion 30

4.2 Conclusion

Westin et al. [WAT92] proved that BRDFs can be predicted based on off-line compu-

tations. They also provided implementations for surfaces. The goal of this work was

to adapt the same technique for volumes with the focus on developing a Path Tracer

for volumes and modifying it to generate BRDF representations. Even though adequate

specimens are missing and the output format is not practical yet the goal was reached.

The Path Tracer and its modification render suitable outputs. Suitable specimens can be

created manually or with texture synthesis algorithms such as the one developed by Kopf

et al. [KFCO∗07]. A usable representation aggregated BRDF data was developed and

applied by Lindemann and Ropinski [LR10].

Chapter 5

Future Work

Several fields for future work should be considered.

So far, the focus of the implementation of the Photon Tracer was not on performance.

This does not to seem to be a drawback because the BRDF data is computed off-line.

However, a higher degree of detail can only be achieved with more samples. If the

amount of samples is too high, even an off-line computation can take too long. Thus,

the performance of the Photon Tracer should be improved. With the recent upcoming

of multi-core CPUs a parallel working Photon Tracer should definitely be considered to

improve the performance.

In a Path Tracer thousands of rays are send for each pixel to avoid noise. This technique

is called supersampling. Noise is not a problem for the Photon Tracer because the

samples on the sphere do not represent pixels and a lot samples can be create without

supersampling. However, when the rays exit the volume again their photon load has to

be saved. How much load is saved depends on the view point and the direction the rays

exit the volume. So far the cosine is used to estimate what portion of the load is saved.

If this approach is suitable should be subject to further research.

Many light effects were not considered in the implementation. For instance, the effect

of refraction is not simulated. Refractions is an important effect for achieving realistic

renderings of translucent objects. Volume rendering is used a lot for medical visualiza-

tion. Organic materials such as fat and muscles have translucent parts. To render these

realistically refraction becomes an important feature.

As mentioned before, the quality of the computed BRDF depends on the quality of the

specimen. So far, the specimen was an abstract volume created from a 3D texture which

in return was generated from a 2D exemplar. This approach promises to ease the creation

of high quality specimens. Thus, it is another important aspect of future research.

32

At last, the computed BRDF data has to be represented in a way that ensures inter-

polation and fast retrieval during real-time rendering. In section 3.2.4 a representation

was proposed. However, it does not yet meet the requirements demanded for real-time

rendering. Thus it should be a subject for future research.

Bibliography

[AMHH08] Akenine-Möller T., Haines E., Hoffman N.: Real-Time Rendering

3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[Com05] Comninos P.: Mathematical and Computer Programming Techniques for

Computer Graphics. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2005.

[DPS07] Dimov I., Penzov A., Stoilova S.: Parallel Monte Carlo sampling

scheme for sphere and hemisphere. Numerical Methods and Applications

(2007), 148–155.

[Dut03] Dutre P.: Global illumination compendium. the concise guide to global

illumination algorithms. http://www.cs.kuleuven.ac.be/~phil/GI/, Au-

gust 2003.

[HKRs∗06] Hadwiger M., Kniss J. M., Rezk-salama C., Weiskopf D., Engel

K.: Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA,

2006.

[Jen01] Jensen H. W.: Realistic image synthesis using photon mapping. A. K.

Peters, Ltd., Natick, MA, USA, 2001.

[Kaj86] Kajiya J. T.: The rendering equation. In SIGGRAPH ’86: Proceedings of

the 13th annual conference on Computer graphics and interactive techniques

(New York, NY, USA, 1986), ACM, pp. 143–150.

[KFCO∗07] Kopf J., Fu C.-W., Cohen-Or D., Deussen O., Lischinski D.,

Wong T.-T.: Solid texture synthesis from 2d exemplars. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (2007),

2:1–2:9.

BIBLIOGRAPHY 34

[KW03] Krüger J., Westermann R.: Acceleration techniques for gpu-based vol-

ume rendering. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003

(VIS’03) (Washington, DC, USA, 2003), IEEE Computer Society, p. 38.

[Lev88] Levoy M.: Display of surfaces from volume data. IEEE Computer graphics

and Applications 8, 3 (1988), 29–37.

[LR10] Lindemann F., Ropinski T.: Advanced light material interaction for

direct volume rendering. In IEEE/EG International Symposium on Volume

Graphics (2010), Westermann R., Kindlmann G., (Eds.), Eurographics As-

sociation, pp. 101–108.

[MSRMH09] Meyer-Spradow J., Ropinski T., Mensmann J., Hinrichs K. H.:

Voreen: A rapid-prototyping environment for ray-casting-based volume vi-

sualizations. IEEE Computer Graphics and Applications (Applications

Department) 29, 6 (Nov./Dec. 2009), 6–13.

[NDM05] Ngan A., Durand F., Matusik W.: Experimental analysis of BRDF

models. In Proceedings of the Eurographics Symposium on Rendering

(2005), pp. 117–226.

[Pho75] Phong B. T.: Illumination for computer generated pictures. Commun.

ACM 18, 6 (1975), 311–317.

[WAT92] Westin S., Arvo J., Torrance K.: Predicting reflectance functions

from complex surfaces. ACM Siggraph Computer Graphics 26, 2 (1992),

255–264.

[Wik10] Wikipedia: Refraction — wikipedia, the free encyclopedia, 2010. [Online;

accessed 9-August-2010].

[WLT04] Westin S., Li H., Torrance K.: A comparison of four brdf mod-

els. Research Note PCG-04-02, Cornell University Program of Computer

Graphics (2004).

Appendix A

Path Tracer Source Code

The code in listing A.1 is called to render the volume. The entry and exit points are

generated using the Krüger and Westermann algorithm.

For each view pixel the PathTrace function is called. Note that no supersampling is

done. The definition for the PathTrace function can be seen in listing A.2.

1 void RaytracerCL : : RenderImage ()

2 {
3 LGL ERROR;

4

5 // output view s i z e

6 int width = outpor t . g e tS i z e () . x ;

7 int he ight = outpor t . g e tS i z e () . y ;

8

9 // b u f f e r f o r output image

10 f loat ∗ p i x e l s = new float [width∗ he ight ∗ 4] ;
11

12 // download eep t e x t u r e s and s e t b u f f e r s

13 f loat ∗ entry = (f loat ∗) entryPort . getColorTexture ()−>
downloadTextureToBuffer (GL RGBA, GL FLOAT) ;

14 f loat ∗ e x i t = (f loat ∗) e x i tPo r t . getColorTexture ()−>
downloadTextureToBuffer (GL RGBA, GL FLOAT) ;

15

16 //assume bpv i s 4

17 this−>volume data = dynamic cast<Volume4xUInt8∗>(volumePort . getData ()

−>getVolume ()) ;

18 tg t : : i v e c3 volumeDimensions = volume data −>getDimensions () ;

19

36

20 // ge t g rad i en t volume

21 this−>vo lume grad i ent data = volumeGradientPort . getData ()−>getVolume

() ;

22

23 f loat s amp l i n g s t ep s i z e = 1 . f / (tg t : : min (volumeDimensions) ∗
s amp l ing ra t e . get ()) ;

24

25 LINFO(” Star t Path Tracing . . . ”) ;

26

27 for (int w = 0 ; w< width ; w++) {
28 for (int h = 0 ; h<he ight ; h++) {
29

30 std : : cout << ” . ” ;

31

32 int index = 4 ∗ (h∗width + w) ;

33

34 tg t : : vec3 f rontPos = tgt : : vec3(&entry [index]) ;

35 tg t : : vec3 backPos = tgt : : vec3(& ex i t [index]) ;

36 i f (f rontPos != backPos) {
37 Ray ray ;

38 ray . r e cu r s i on dep th = 0 ;

39 ray . d i r e c t i o n = tgt : : normal ize (backPos−f rontPos) ;

40 ray . next sample = frontPos ;

41 ray . old medium = tgt : : vec4 (0 . 0 f) ;

42 tg t : : vec4 c o l o r = PathTrace (ray , s amp l i n g s t ep s i z e) ;

43 p i x e l s [index] = co l o r . r ;

44 p i x e l s [index+1] = co l o r . g ;

45 p i x e l s [index+2] = co l o r . b ;

46 p i x e l s [index+3] = co l o r . a ;

47 }
48 }
49 }
50

51 LINFO(”Path Tracing done . ”) ;

52

53 // copy p i x e l s to reder t a r g e t

54 outpor t . a c t i va t eTarge t () ;

55

56 g lC l ea rCo lo r (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

57 g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

58

59 glWindowPos2i (0 , 0) ;

37

60 glDrawPixels (outpor t . g e tS i z e () . x , outpor t . g e tS i z e () . y , GL RGBA,

GL FLOAT, p i x e l s) ;

61

62 outpor t . deac t iva teTarge t () ;

63 LGL ERROR;

64

65 delete [] p i x e l s ;

66 entryPort . getColorTexture ()−>dest roy () ;

67 ex i tPo r t . getColorTexture ()−>dest roy () ;

68 }

Listing A.1: RenderImage Function Definition

1 tg t : : vec4 RaytracerCL : : PathTrace (Ray ray , const f loat s t e p s i z e)

2 {
3 // r e s u l t c o l o r

4 tg t : : vec4 r e s u l t (0 . 0 f) ;

5

6 i f (ray . r e cu r s i on dep th == this−>MAXDEPTH)

7 return r e s u l t ;

8

9 // check i f nex t sample i s ou t s i d e o f volume or not de f ined

10 i f (ray . next sample . x > 1 .0 f | | ray . next sample . y > 1 .0 f | | ray .

next sample . z > 1 .0 f | | ray . next sample . x < 0 .0 f | | ray . next sample .

y < 0 .0 f | | ray . next sample . z < 0 .0 f)

11 return r e s u l t ;

12

13 // c a l c u l a t e sampling po in t

14 tg t : : vec3 sample = ray . next sample ;

15

16 // ge t co l o r f o r sample

17 tg t : : vec4 c o l o r = this−>getVoxel (sample , u s e l i n e a r f i l t e r i n g . get ()) ;

18

19 // c a l c u l a t e g rad i en t o f sample

20 tg t : : vec3 g rad i ent = getGradient (sample , u s e l i n e a r f i l t e r i n g . get ()) ;

21 tg t : : vec3 normal ized grad = tgt : : normal ize (g rad i ent) ;

22

23 // use o l d f a s h i oned absorp t i on / emiss ion i n t e g r a l i f ray i s in same

medium , g rad i en t i s not de f ined or i f a lpha i s too low

24 i f (tg t : : l ength (c o l o r − ray . old medium) < 0 .001 f | | tg t : : l ength (

g rad i en t) < 0 .001 f | | c o l o r . a < s o l i d a l p h a t h r e s h o l d . get ())

25 {
26 // the ray i s s t i l l in the SAME MEDIUM.

38

27

28 Ray i n t e g r a l r a y = ray ;

29 while (tg t : : l ength (c o l o r − i n t e g r a l r a y . old medium) < 0 .001 f | |
c o l o r . a < s o l i d a l p h a t h r e s h o l d . get ())

30 {
31 r e s u l t . r = r e s u l t . r + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . r ;

32 r e s u l t . g = r e s u l t . g + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . g ;

33 r e s u l t . b = r e s u l t . b + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ∗ c o l o r . b ;

34 r e s u l t . a = r e s u l t . a + (1 . 0 f − r e s u l t . a) ∗ c o l o r . a ;

35

36 // s e t forward in volume

37 i n t e g r a l r a y . next sample += s t e p s i z e ∗ tg t : : normal ize (

i n t e g r a l r a y . d i r e c t i o n) ;

38

39 // check i f next sample i s ou t s i d e o f volume

40 i f (i n t e g r a l r a y . next sample . x > 1 .0 f | | i n t e g r a l r a y .

next sample . y > 1 .0 f | | i n t e g r a l r a y . next sample . z > 1 .0 f | |
i n t e g r a l r a y . next sample . x < 0 .0 f | | i n t e g r a l r a y .

next sample . y < 0 .0 f | | i n t e g r a l r a y . next sample . z < 0 .0 f)

41 return r e s u l t ;

42

43 // s e t o l d medium

44 i n t e g r a l r a y . old medium = co l o r ;

45

46 // ge t new sample

47 c o l o r = this−>getVoxel (i n t e g r a l r a y . next sample) ;

48 }
49

50 // r a i s e recur s ion depth

51 i n t e g r a l r a y . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

52

53 // ge t next co l o r

54 tg t : : vec4 p r e c o l o r = PathTrace (i n t e g r a l r a y , s t e p s i z e) ;

55

56 // c a l c u a l t e ray i n t e g r a l (f r on t to back)

57 r e s u l t . r = r e s u l t . r + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . r

;

58 r e s u l t . g = r e s u l t . g + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . g

;

59 r e s u l t . b = r e s u l t . b + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ∗ p r e c o l o r . b

;

60 r e s u l t . a = r e s u l t . a + (1 . 0 f − r e s u l t . a) ∗ p r e c o l o r . a ;

61 } else {

39

62

63 // ray h i t a d i f f e r e n t medium . Decide whether we have specu l a r

r e f l e c t i o n , r e f r a c t i o n or d i f f u s e r e f l e c t i o n

64

65 // REFRACTION i s omit ted . There needs to be a way to r e t r i e v e

r e f r a c t i o n i nd i c e s

66

67 // REFLECTION case

68

69 // DIFFUSE case

70 // spawn s e v e r a l new rays in Energy Path Tracing . Each ray has the

Energy cos (t h e t a) where t h e t a i s the ang l e between incoming Ray

and Normal (g rad i en t)

71 // the new rays shou ld be e q u a l l y d i s t r i b u t e d f o r now

72 i f (tg t : : l ength (g rad i ent) < g r ad i e n t s p e c u l a r t h r e s h o l d . get ())

73 {
74 tg t : : vec3 normal = normal ized grad ;

75

76 // crea t e new ray

77 Ray new ray ;

78 new ray . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

79 new ray . old medium = co l o r ;

80 new ray . d i r e c t i o n = generateRandomDiffuseRay () ;

81 new ray . next sample = ray . next sample + s t e p s i z e ∗ new ray .

d i r e c t i o n ;

82

83 f loat co s the ta = std : : max(0 . 0 f , t g t : : dot (normal , new ray .

d i r e c t i o n)) ;

84 tg t : : vec4 r e f l e c t e d c o l o r = cos the ta ∗ PathTrace (new ray ,

s t e p s i z e) ;

85

86 // add r e f l e c t e d c o l o r s

87 r e s u l t = co l o r ∗ r e f l e c t e d c o l o r ;

88 }
89 // SPECULAR case

90 else

91 {
92 Ray new ray ;

93 tg t : : vec3 r e v e r s e d r a y d i r e c t i o n = − ray . d i r e c t i o n ;

94 new ray . d i r e c t i o n = tgt : : normal ize (2 ∗ tg t : : dot (

normal ized grad , r e v e r s e d r a y d i r e c t i o n) ∗ normal i zed grad

− r e v e r s e d r a y d i r e c t i o n) ;

40

95 new ray . next sample = ray . next sample + s t e p s i z e ∗ new ray .

d i r e c t i o n ;

96 new ray . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

97 new ray . old medium = ray . old medium ;

98

99 tg t : : vec4 r e f l e c t e d c o l o r = PathTrace (new ray , s t e p s i z e) ;

100

101 // combine c o l o r s us ing phong

102 // use PHONG here cos (t h e t a) where t h e t a i s the ang l e between V

(Viewvector , incoming Ray) and R (r e f l e c t e d Ray) .

103 int e = specu la r exponent . get () ;

104 f loat f a c t o r = std : : max(0 .0 f , t g t : : dot (new ray . d i r e c t i on ,

r e v e r s e d r a y d i r e c t i o n)) ;

105 f a c t o r = pow(fac to r , e) ;

106 r e s u l t = co l o r ∗ f a c t o r ∗ r e f l e c t e d c o l o r ;

107 }
108 }
109

110 return r e s u l t ;

Listing A.2: Definition of the PathTrace Function

Appendix B

Calculation of Sampling Points on

Sphere

Table B.1 shows how the sampling points for a hemisphere are calculated if the sampling

point P = (x0, y0, z0) for the spherical triangle is known. Table B.2 shows how the

sampling point for a sphere are calculated from spherical sampling points. Note that

these sampling points can be calculated parallel.

42

P0(x0, y0, z0) P ′0(−x0, y0, z0) P ′′0 (−x0,−y0, z0) P ′′′0 (x0,−y0, z0)
P1(y0, x0, z0) P ′1(−y0, x0, z0) P ′′1 (−y0,−x0, z0) P ′′′1 (y0,−x0, z0)
P2(z0, y0, x0) P ′2(−z0, y0, x0) P ′′2 (−z0,−y0, x0) P ′′′2 (z0,−y0, x0)
P3(z0, x0, y0) P ′3(−z0, x0, y0) P ′′3 (−z0,−x0, y0) P ′′′3 (z0,−x0, y0)
P4(x0, z0, y0) P ′4(−x0, z0, y0) P ′′4 (−x0,−z0, y0) P ′′′4 (x0,−z0, y0)
P5(y0, z0, x0) P ′5(−y0, z0, x0) P ′′5 (−y0,−z0, x0) P ′′′5 (y0,−z0, x0)

Table B.1: Sample Coordinates of Hemisphere

P0(x0, y0, z0) P ′0(−x0, y0, z0) P ′′0 (−x0,−y0, z0) P ′′′0 (x0,−y0, z0)
P1(y0, x0, z0) P ′1(−y0, x0, z0) P ′′1 (−y0,−x0, z0) P ′′′1 (y0,−x0, z0)
P2(z0, y0, x0) P ′2(−z0, y0, x0) P ′′2 (−z0,−y0, x0) P ′′′2 (z0,−y0, x0)
P3(z0, x0, y0) P ′3(−z0, x0, y0) P ′′3 (−z0,−x0, y0) P ′′′3 (z0,−x0, y0)
P4(x0, z0, y0) P ′4(−x0, z0, y0) P ′′4 (−x0,−z0, y0) P ′′′4 (x0,−z0, y0)
P5(y0, z0, x0) P ′5(−y0, z0, x0) P ′′5 (−y0,−z0, x0) P ′′′5 (y0,−z0, x0)
P̄0(x0, y0,−z0) P̄ ′0(−x0, y0,−z0) P̄ ′′0 (−x0,−y0,−z0) P̄ ′′′0 (x0,−y0,−z0)
P̄1(y0, x0,−z0) P̄ ′1(−y0, x0,−z0) P̄ ′′1 (−y0,−x0,−z0) P̄ ′′′1 (y0,−x0,−z0)
P̄2(z0, y0,−x0) P̄ ′2(−z0, y0,−x0) P̄ ′′2 (−z0,−y0,−x0) P̄ ′′′2 (z0,−y0,−x0)
P̄3(z0, x0,−y0) P̄ ′3(−z0, x0,−y0) P̄ ′′3 (−z0,−x0,−y0) P̄ ′′′3 (z0,−x0,−y0)
P̄4(x0, z0,−y0) P̄ ′4(−x0, z0,−y0) P̄ ′′4 (−x0,−z0,−y0) P̄ ′′′4 (x0,−z0,−y0)
P̄5(y0, z0,−x0) P̄ ′5(−y0, z0,−x0) P̄ ′′5 (−y0,−z0,−x0) P̄ ′′′5 (y0,−z0,−x0)

Table B.2: Sample Coordinates of Sphere

Appendix C

Photon Tracer Source Code

The function ComputeBRDF is called to compute the BRDF data for a specimen. The

code is seen in listing C.1. First, the sphere sampling points are generated. After that

the PhotonTrace function seen in listing C.2 is called for only one view. Note that

the PhotonTrace function has two steps to separate certain tasks. In PhotonTrace the

energy ray is set up. PhotonTraceIterative seen in listing C.3 is an iterative implemen-

tation of the Photon Tracer. Note that PhotonTraceIterative can return more than

one result. This can happen if more than one new ray is spawned after a diffuse reflection.

1 void RaytracerCL : : ComputeBRDF()

2 {
3 LGL ERROR;

4

5 // output view s i z e

6 int width = outpor t . g e tS i z e () . x ;

7 int he ight = outpor t . g e tS i z e () . y ;

8 LGL ERROR;

9

10 // b u f f e r f o r output image

11 f loat ∗ p i x e l s = new float [width∗ he ight ∗ 4] ;
12

13 //assume bpv i s 4

14 this−>volume data = dynamic cast<Volume4xUInt8∗>(volumePort . getData ()

−>getVolume ()) ;

15 tg t : : i v e c3 volumeDimensions = volume data −>getDimensions () ;

16 LGL ERROR;

17

18 // ge t g rad i en t volume

44

19 this−>vo lume grad i ent data = volumeGradientPort . getData ()−>getVolume

() ;

20 LGL ERROR;

21

22 f loat s amp l i n g s t ep s i z e = 1 . f / (tg t : : min (volumeDimensions) ∗
s amp l ing ra t e . get ()) ;

23 LGL ERROR;

24

25 int MAX SAMPLES = 256 ; //∗ 48 s ince sphere i s d i v i d ed in t o 48 par t s

26 std : : vector<tg t : : vec3> sphereSampl ingPoints = generateSphereSamples (

MAX SAMPLES) ;

27

28 LINFO(”Compute BRDF with ” << sphereSampl ingPoints . s i z e () << ” samples .

”) ;

29

30 // c l e a r image

31 for (int i = 0 ; i<(width∗ he ight) ; i++)

32 {
33 tg t : : vec4 c o l o r = tgt : : vec4 (0 . 0 f) ;

34

35 p i x e l s [i ∗4] = co l o r . r ;

36 p i x e l s [i ∗4+1] = co l o r . g ;

37 p i x e l s [i ∗4+2] = co l o r . b ;

38 p i x e l s [i ∗4+3] = co l o r . a ;

39 }
40

41 // path t race f o r each sphere smapl ing po in t

42 for (s i z e t i = 0 ; i < sphereSampl ingPoints . s i z e () ; i++)

43 {
44 f loat e = PhotonTrace (sphereSampl ingPoints [i] ,

sphereSampl ingPoints [0] , s amp l i n g s t ep s i z e) ;

45

46 // t e x t u r e coord ina t e s .

47 f loat s = 0 .5 f + sphereSampl ingPoints [i] . x / (2 ∗ std : : s q r t (pow(

sphereSampl ingPoints [i] . x , 2 . 0 f) + pow(sphereSampl ingPoints [i] . y

, 2 . 0 f) + pow(sphereSampl ingPoints [i] . z+1.0 f , 2 . 0 f))) ;

48 f loat t = 0 .5 f + sphereSampl ingPoints [i] . y / (2 ∗ std : : s q r t (pow(

sphereSampl ingPoints [i] . x , 2 . 0 f) + pow(sphereSampl ingPoints [i] . y

, 2 . 0 f) + pow(sphereSampl ingPoints [i] . z+1.0 f , 2 . 0 f))) ;

49

50 writeImageFloat (p i x e l s , t g t : : i v e c2 (width , he ight) , s , t , t g t : : vec4 (

e , e , e , 1 . 0 f)) ;

51 }

45

52

53 LINFO(”Photon Tracing done . ”) ;

54

55 // copy p i x e l s to reder t a r g e t

56 outpor t . a c t i va t eTarge t () ;

57

58 g lC l ea rCo lo r (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

59 g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

60

61 glWindowPos2i (0 , 0) ;

62 glDrawPixels (outpor t . g e tS i z e () . x , outpor t . g e tS i z e () . y , GL RGBA,

GL FLOAT, p i x e l s) ;

63

64 outpor t . deac t iva teTarge t () ;

65 LGL ERROR;

66

67 delete [] p i x e l s ;

68 }

Listing C.1: ComputeBRDF Function Definition

1 f loat RaytracerCL : : PhotonTrace (tg t : : vec3 l ightSampl ingPoint , t g t : : vec3

viewSamplingPoint , const f loat s t e p s i z e)

2 {
3 // Create energy ray

4 EnergyRay ray ;

5 ray . r e cu r s i on dep th = 0 ;

6 ray . d i r e c t i o n = −l i ghtSampl ingPo int ;

7

8 ray . next sample = sphereSamplingPointToEntryPoint (l i ghtSampl ingPo int) ;

9 ray . old medium = tgt : : vec4 (0 . 0 f) ;

10 ray . load = 1 .0 f ;

11

12 // Photon t race ray

13 std : : vector<EnergyRay> r e s u l t s = PhotonTraceI te rat ive (ray , s t e p s i z e) ;

14

15 // The ray e x i t e d the volume . Ca l cu l a t e i t s p o s i t i o n on un i t sphere

16 // Exi t sampling po in t on sphere i s normal ize (e x i tPo in t − (0 . 5 , 0 .5 ,

0 . 5))

17 tg t : : vec3 l i ghtEx i tSampl ingPo int = tgt : : normal ize (tg t : : vec3 (0 . 5 f) −
r e s u l t s [0] . next sample) ;

18

19 // Check how much energy reaches the view po in t . Use cos ine

46

20 f loat energy = tgt : : dot (viewSamplingPoint , l i ghtEx i tSampl ingPo int) ∗
ray . load ;

21

22 return energy ;

23 }

Listing C.2: Definition of the PhotonTrace Function

1 std : : vector<RaytracerCL : : EnergyRay> RaytracerCL : : PhotonTrace I te rat ive (

EnergyRay in i t i a lRay , const f loat s t e p s i z e)

2 {
3 std : : vector<EnergyRay> ex i t ingRays ;

4

5 std : : vector<EnergyRay> raysToTrace ;

6 raysToTrace . push back (i n i t i a lRay) ;

7

8 while (! raysToTrace . empty ())

9 {
10 EnergyRay ray = raysToTrace [0] ;

11 raysToTrace . e r a s e (raysToTrace . begin ()) ;

12

13 // check i f ray meets an e x i t cond i t i on

14

15 // ray reached max depth wi thout ever e x i t i n g volume . The volume

absorped the energy .

16 i f (ray . r e cu r s i on dep th == this−>MAXDEPTH)

17 {
18 EnergyRay e = ray ;

19 e . load = 0 .0 f ;

20 ex i t ingRays . push back (e) ;

21 continue ;

22 }
23

24 // The ray l o s t a l l i t s energy

25 i f (ray . load < 0 .0001 f)

26 {
27 ex i t ingRays . push back (ray) ;

28 continue ;

29 }
30

31 // check i f nex t sample i s ou t s i d e o f volume or not de f ined

47

32 i f (ray . next sample . x > 1 .0 f | | ray . next sample . y > 1 .0 f | | ray .

next sample . z > 1 .0 f | | ray . next sample . x < 0 .0 f | | ray .

next sample . y < 0 .0 f | | ray . next sample . z < 0 .0 f)

33 {
34 ex i t ingRays . push back (ray) ;

35 continue ;

36 }
37

38 // PHOTON TRACE

39

40 // c a l c u l a t e sampling po in t

41 tg t : : vec3 sample = ray . next sample ;

42

43 // ge t co l o r f o r sample

44 tg t : : vec4 c o l o r = this−>getVoxel (sample , u s e l i n e a r f i l t e r i n g . get

()) ;

45

46 // c a l c u l a t e g rad i en t o f sample

47 tg t : : vec3 g rad i ent = getGradient (sample , u s e l i n e a r f i l t e r i n g . get

()) ;

48 tg t : : vec3 normal ized grad = tgt : : normal ize (g rad i ent) ;

49

50 // use o l d f a s h i oned absorp t i on / emiss ion i n t e g r a l i f ray i s in

same medium , g rad i en t i s not de f ined or i f a lpha i s too low

51 i f (tg t : : l ength (c o l o r − ray . old medium) < 0 .001 f | | tg t : : l ength (

g rad i ent) < 0 .001 f | | c o l o r . a < s o l i d a l p h a t h r e s h o l d . get ())

52 {
53 // the ray i s s t i l l in the SAME MEDIUM.

54

55 EnergyRay i n t e g r a l r a y = ray ;

56 bool e x i t = fa l se ;

57 while (tg t : : l ength (c o l o r − i n t e g r a l r a y . old medium) < 0 .001 f

| | c o l o r . a < s o l i d a l p h a t h r e s h o l d . get ())

58 {
59 i n t e g r a l r a y . load = i n t e g r a l r a y . load ∗ (1 . 0 f − c o l o r . a) ;

60

61 // s e t forward in volume

62 i n t e g r a l r a y . next sample += s t e p s i z e ∗ tg t : : normal ize (

i n t e g r a l r a y . d i r e c t i o n) ;

63

64 // check i f nex t sample i s ou t s i d e o f volume

65 i f (i n t e g r a l r a y . next sample . x > 1 .0 f | | i n t e g r a l r a y .

next sample . y > 1 .0 f | | i n t e g r a l r a y . next sample . z > 1 .0

48

f | | i n t e g r a l r a y . next sample . x < 0 .0 f | | i n t e g r a l r a y .

next sample . y < 0 .0 f | | i n t e g r a l r a y . next sample . z < 0 .0

f)

66 {
67 ex i t ingRays . push back (i n t e g r a l r a y) ;

68 e x i t = true ;

69 break ;

70 }
71

72 // s e t o l d medium

73 i n t e g r a l r a y . old medium = co l o r ;

74

75 // ge t new sample

76 c o l o r = this−>getVoxel (i n t e g r a l r a y . next sample) ;

77 }
78

79 i f (e x i t)

80 continue ;

81

82 // r a i s e recur s ion depth

83 i n t e g r a l r a y . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

84

85 // cont inue photon t race

86 raysToTrace . push back (i n t e g r a l r a y) ;

87 // r e s u l t . a = r e s u l t . a + (1 .0 f − r e s u l t . a) ∗ p r e c o l o r . a ;

88 } else {
89

90 // ray h i t a d i f f e r e n t medium . Decide whether we have specu l a r

r e f l e c t i o n , r e f r a c t i o n or d i f f u s e r e f l e c t i o n

91

92 // REFRACTION i s omit ted . There needs to be a way to r e t r i e v e

r e f r a c t i o n i nd i c e s

93

94 // REFLECTION case

95

96 // DIFFUSE case

97 // spawn s e v e r a l new rays in Energy Path Tracing . Each ray has

the Energy cos (t h e t a) where t h e t a i s the ang l e between

incoming Ray and Normal (g rad i en t)

98 // the new rays shou ld be e q u a l l y d i s t r i b u t e d f o r now

99 i f (tg t : : l ength (g rad i ent) < g r ad i e n t s p e c u l a r t h r e s h o l d . get ()

)

100 {

49

101 tg t : : vec3 normal = normal ized grad ;

102 tg t : : vec4 av e r ag e c o l o r (0 . 0 f) ;

103 std : : vector<tg t : : vec3> random ray d i r e c t i ons =

generateRandomDiffuseRays (DIFFUSE RAYS) ;

104

105 for (s i z e t i = 0 ; i < random ray d i r e c t i ons . s i z e () ; i++)

106 {
107 // crea t e new ray

108 EnergyRay new ray ;

109 new ray . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

110 new ray . old medium = co l o r ;

111 new ray . d i r e c t i o n = tgt : : normal ize (

random ray d i r e c t i ons [i]) ;

112 new ray . next sample = ray . next sample + s t e p s i z e ∗
new ray . d i r e c t i o n ;

113

114 f loat co s the ta = std : : max(0 . 0 f , t g t : : dot (normal ,

new ray . d i r e c t i o n)) ;

115 new ray . load = cos the ta ∗ ray . load ;

116

117 raysToTrace . push back (new ray) ;

118 }
119 }
120 // SPECULAR case

121 else

122 {
123 EnergyRay new ray ;

124 tg t : : vec3 r e v e r s e d r a y d i r e c t i o n = − ray . d i r e c t i o n ;

125 new ray . d i r e c t i o n = tgt : : normal ize (2 ∗ tg t : : dot (

normal ized grad , r e v e r s e d r a y d i r e c t i o n) ∗
normal i zed grad − r e v e r s e d r a y d i r e c t i o n) ;

126 new ray . next sample = ray . next sample + s t e p s i z e ∗ new ray

. d i r e c t i o n ;

127 new ray . r e cu r s i on dep th = ray . r e cu r s i on dep th + 1 ;

128 new ray . old medium = ray . old medium ;

129 new ray . load = ray . load ;

130

131 // energy i s l o a s t accord ing to phong

132 // use PHONG here cos (t h e t a) where t h e t a i s the ang l e

between V (Viewvector , incoming Ray) and R (r e f l e c t e d

Ray) .

133 int e = specu la r exponent . get () ;

50

134 f loat f a c t o r = std : : max(0 .0 f , t g t : : dot (new ray . d i r e c t i on ,

r e v e r s e d r a y d i r e c t i o n)) ;

135 f a c t o r = pow(fac to r , e) ;

136

137 new ray . load ∗= fa c t o r ;

138 raysToTrace . push back (new ray) ;

139 }
140 }
141 }
142

143 return ex i t ingRays ;

144 }

Listing C.3: Iterative Implementation of the Photon Tracer

Erklärung über Eigenständigkeit

Hiermit versichere ich, Karsten Jeschkies, dass ich die vorliegende Arbeit selbstständig

verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Gedanklich, inhaltlich oder wörtlich Übernommenes habe ich entsprechend kenntlich

gemacht, d.h. dieses durch Angabe von Herkunft und Text oder Anmerkung belegt. Dies

gilt in gleicher Weise für Bilder, Tabellen und Skizzen, die nicht von mir selbst erstellt

wurden.

Ort, Datum und Unterschrift

